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For the bispectrum the estimator takes the general form 
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We can put this in a general form by defining

Where    represents the                                        degrees 
of freedom  

℘ ℘ = {l1,m1, l2,m2, ..., lp,mp}
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The estimator for a general polyspectrum is then defined as 

where      is the appropriate linear term
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We will now go one step further by defining the weighted 
vectors (and matrix) 

A℘ =
�a℘��

Cl1Cl2 ...Clp

, B℘ =
a℘ − alin℘�
Cl1Cl2 ...Clp

, C℘℘� =
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�
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...ClpCl�p

,

Ē =
AT C−1B
AT C−1A

And we can then write the estimator in matrix form as
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If we then suppose the existence of an orthonormal basis
�

℘

Rn℘Rn�℘ = δnn� (RRT = I)

R = λQbuilt from some separable functions

R =
Gl1l2l3
m1m2m3

vl1vl2vl3
Rnl1l2l3

Rnl1l2l3 = λnmQnl1l2l3(= qiqjqk + 5 perms)
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A℘ =
�

n

αnRn℘ (A = RTα)

α = RA

Then we can decompose our theory representing it as a set 
of modal coefficients 

P = RTR

PA = A

We will truncate our basis at some nmax so so we can also 
define a projection operator

And we take our theory to be completely described by this 
basis
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This method can be used to simulate maps with a given 
bispectrum and trispectrum
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Using the expansion the nonGaussian contributions can be 
easily calculated
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Figure 14: Simulated maps for nonGaussian models using the late-time map-making method (124); this only includes the aNG
lm

contribution. The upper panel shows a non-Gaussian CMB map from cosmic strings obtained using the analytic expression
for the string bispectrum (29). The lower panel shows a simulated nonGaussian map for an equilateral model. When added to
its Gaussian counterpart map from aG

lm at an amplitude fNL = 600, this equilateral map was used for the bispectrum recovery
illustrated in figs. 16, ??. Note the red colour cast from negative fNL and blue from positive.

already well-studied in the literature (see e.g. [3, 25, 31]), which enables a useful comparison between the

outcome of our numerical pipelines and previously published results for the equilateral shape. Moreover,

the equilateral case does not require sophisticated noise analysis, unlike the local model. However, we will

briefly consider other non-separable models outlined earlier in the introduction, such as the related DBI

model and the cosmic string bispectrum. We note that from the point of view of the eigenmode decomposi-

tion, the formal separability of the equilateral shape is irrelevant; it does not cause early termination of the

expansion series which is nearly identical to the non-separable DBI model (see fig. 10). Having established
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Figure 15: Recovery of fNL from 50 simulated maps of the equilateral model, showing a direct map-by-map comparison between
the primordial estimator (83) (blue) and the CMB estimator (95) (red). Ideal map recovery is shown in the top panel, while
recovery for WMAP-realistic maps is shown below with beam, inhomogeneous noise and mask included (BNM). Both methods
recovered the input fNL = 300 with a variance of approximately ∆fNL = 105 (clean) and 150 (BNM). Note the overall
consistency of the two independent estimators with a significantly lower variance evident between the methods ∆fNL = 30
(clean) and ∆fNL = 103 (BNM).

in several previous studies to work well for equilateral shapes. Moreover, for our purposes the approximate

nearly-optimal estimator is all we need since it contains all the dependence on the theoretical ansatz and

thus all the dependence on our eigenmode expansion, which is the primary concern for this initial validation

process.

We compared the fNL recovered from each map using the two methods, as well as the final averages

and variances. The variances were compared to expectations from Fisher matrix forecasts obtained both

from our eigenmode expansion and from the ‘standard’ αl, βl, γl, δl decompostion of the equilateral

shape used to date in other nonGaussian analysis. In all cases the results were internally consistent and in

agreement with Fisher matrix expectations, as summarized in table (I). This led us to conclude that the

eignemode expansion method appears to be a reliable way to produce non-Gaussian CMB simulations and

fNL estimators for primordial models, whether separable or otherwise.

Having verified the two estimator’s performance on simulated equilateral maps we then applied both of

them to the WMAP5 data, coadding the V and W channels as discussed above. The primordial estimator

obtained the result −174 < f equil
NL < 434, which is consistent with the existing constraints obtained using

standard separable primordial approach (given the caveat that a number of these results have now been

To test the accuracy of 
the method we 

simulated maps using 
both the primordial and 
CMB decompositions 
and then applied  both 

the primordial and CMB 
estimators to both sets 
to produce consistent 

results
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the reliability of the eigenmode expansion method here, in a forthcoming publication [29] we will apply it
to the study of families of non-separable shapes using WMAP5 data.

A. Simulated observational maps

Using the algorithm described in section V, we generated a set of 100 equilateral CMB maps with both the
primordial and late-time decomposition pipelines. We worked at roughly WMAP resolution with lmax = 500
and HEALpix nside = 512, corresponding to a pixel number Npix ≈ 106. We then applied both our
primordial and late-time estimators to both our primordial and late-time sets of simulated maps in all
combinations. We found that in all cases the map-making methods gave consistent results, producing
simulated maps from which the correct fNL could be reliably recovered with the correct variance. Results
for both primordial and late-time estimators on the same set of 50 equilateral maps (with and without the
mask and inhomogeneous noise) with fNL = 300 can be seen in fig. 15. We observe that the two estimators
produce consistent results on the same maps. Of course, there is some small variation between the results as
the two estimators can be regarded to be independent but this proved always to be well within the variance.

In addition, we extracted the equilateral configurations Blll of the bispectrum from the maps and com-
pared the average over all the simulations to the semi-analytic expectations obtained from the standard
decomposition of the equilateral shape in terms of αl(x), βl(x), γl(x), δl(x) (refer to eqns (21) and (24)).
The recovered equilateral bispectrum values were in very good agreement between the semi-analytic predic-
tion from the “standard” α,β,γ,δ decomposition and the simulations, based on our eigenmode expansion,
thus showing consistency with previous approaches.

Finally, we reiterate that this general approach to map simulation was highly efficient, producing Planck
resolution maps for the equilateral model on short timescales. This made estimator validation through
Monte Carlo simulatoins easily achievable with only modest resources. For other well-behaved bispectra,
such as the cosmic string model, the general method proved robust. Examples of non-separable maps
already have been discussed and shown in fig. 14.

B. Primordial and late-time fNL estimators

Choosing an input value fNL = 300 for the sets of equilateral map simulations described above, we
compared results from both the primordial and late-time bispectrum estimators. In order to verify the
consistency of the two methods we selected the late-time map sets and applied both estimators to it. The
tests were performed starting from a noiseless full-sky map and then more realistic simulations were used,
including partial sky-coverage and an anisotropic noise component. The rms noise was obtained by coadding
WMAP V and W channel using the same scheme as the one adopted for nonGaussian analysis by the WMAP
team [3]. The sky-coverage was done using the KQ75 mask, also adopted by the WMAP5 team for their
fNL analysis. Only the approximate form (??) of the estimator is used, and not the full form (33) including
the full covariance matrix and a linear term. Note however that this approximation has been demonstrated

Ideal simulations WMAP5 simulations
Average St. Dev. Average St. Dev.

Primordial estimator 292.9 104.8 297.7 152.1

Late-time estimator 300.6 104.9 278.7 160

Internal st. dev. 38.5 102.6

Table I: Results obtained from the application of the primordial and late-time estimators as described in the text. In the first
two columns, labeled by ‘Ideal simulations’, we consider ideal full-sky noiseless measurements, while in the last two columns,
labeled by ‘WMAP5 simulations’ we include noise and sky coverage in order to simulate a WMAP5-realistic experiment (see
text for further explanation). We apply both estimators to a single set of maps, in this case created using the late-time mode
expansion approach. In the last row, we calculate the difference between the fNL recovered by the two techniques, map by map
for 100 maps, and report the final internal standard deviation between the methods.
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α = RA

We can perform the same modal decomposition on the data 
and the covariance

β = RB −→ PB = RTβ

ζ = RCRT

E ≡ αT ζ−1β

αT ζ−1α

=
(RA)TRC−1RTRB
RATRC−1RTRA

=
ATPC−1PB
ATPC−1PA
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We can understand the effect of the projection by 
considering

A =

�
A�
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�
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�
B�
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C−1 =
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C−1
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X� ≡ PX
X⊥ ≡ (I − P)X
M� ≡ PMP
M⊥ ≡ (I − P)M(I − P)

M× ≡ PM(I − P)
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We can understand the effect of the projection by 
considering

Ē =
A�

�
C−1
� B� + C−1

× B⊥

�

AT
� C

−1
� A�

E =
A�C−1

� B�

AT
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−1
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The difference is the projection of contamination from the 
orthogonal space into the subspace
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INVERSE COVARIANCE

Can we even calculate the covariance in the modal space?
Yes!
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Also as all covariance matrices are symmetric positive 
definite they have a Cholesky decomposition

ζ = λ̃ λ̃T

α� = λ̃−1α β� = λ̃−1β

E =
α�Tβ�

α�Tα� , ζ � = I

And we can absorb the covariance into our modes. This 
amounts to a re-orthogonalisation to an uncorrelated 

orthonormal basis
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We have              so can reconstruct the best fit bispectrum to the 
data by using the     as our    . If we have constructed a primordial basis 
as well then we can     use the decomposition of projected primordial 

modes to find the best fit primordial bispectrum

RECONSTRUCTION

15

�β� = α
αβ
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Figure 19: Cumulative sum of mode contributions to the total F̄ 2
NL (55) for the local FNL = 100 (red) and FNL = 200 (green)

map simulations compared with Gaussian maps (blue). The 1σ variance is shaded around the mean value obtained from 100
simulations (1000 simulations for the Gaussian case).

Figure 20: Cumulative sum of mode contributions to the total F̄NL (55) for the WMAP data compared with Gaussian map
simulations as in fig. 19.

X. DISCUSSION AND CONCLUSIONS

We have implemented and validated separable mode expansions with a general late-time CMB bispectrum
estimator, using it to investigate a wide range of primordial models with WMAP 5-year data. Notable new
constraints include those on non-scaling feature models, trans-Planckian (flat) models and warm inflation.
The results for nearly scale-invariant models are summarised in Table IV, demonstrating consistency with
previous constraints on equilateral and local models. Note that we adopt a nonlinearity parameter FNL

normalised to facilitate direct comparison between the local fNL and any other model. We found no evidence
for significant deviations from Gaussianity for any specific model (at 95% confidence). Feature models were
surveyed over a wide range of parameters with periodicities above l∗ = 150 and over the full domain of
phase values. Again, no significant bispectrum detection was made, though given the nature of this survey

In addition to constraining particular models we can perform 
a blind search 

F 2
NL =

β�Tβ�

α�Tα�

25

Figure 19: Cumulative sum of mode contributions to the total F̄ 2
NL (55) for the local FNL = 100 (red) and FNL = 200 (green)

map simulations compared with Gaussian maps (blue). The 1σ variance is shaded around the mean value obtained from 100
simulations (1000 simulations for the Gaussian case).

Figure 20: Cumulative sum of mode contributions to the total F̄NL (55) for the WMAP data compared with Gaussian map
simulations as in fig. 19.

X. DISCUSSION AND CONCLUSIONS

We have implemented and validated separable mode expansions with a general late-time CMB bispectrum
estimator, using it to investigate a wide range of primordial models with WMAP 5-year data. Notable new
constraints include those on non-scaling feature models, trans-Planckian (flat) models and warm inflation.
The results for nearly scale-invariant models are summarised in Table IV, demonstrating consistency with
previous constraints on equilateral and local models. Note that we adopt a nonlinearity parameter FNL

normalised to facilitate direct comparison between the local fNL and any other model. We found no evidence
for significant deviations from Gaussianity for any specific model (at 95% confidence). Feature models were
surveyed over a wide range of parameters with periodicities above l∗ = 150 and over the full domain of
phase values. Again, no significant bispectrum detection was made, though given the nature of this survey
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As we expect the covariance matrix to be the identity we can use 
principle component analysis to identify the shape of contaminants. 

We first calculate the covariance matrix for beta from simulations

And then find the rotation which diagonalises 
it. This is equivalent to performing an eigen 

decomposition. The result is that you obtain a 
new orthonormal basis but now your modes 
are uncorrelated and ordered from greatest 

to least variance. 

V ζV T = D
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WMAP Mask
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CONCLUSIONS
2

Figure 1: Flow chart for the two general estimator methodologies described and implemented in this article using complete
separable mode expansions. Note the overall redundancy which assists estimator validation and the independence of the
extraction of expansion coefficients from theory αn (cycle 1) and data βn (cycle 2). Explanations for the schematic equations
can be found in the main text.

need for new physics during inflation or even a paradigm shift away from it. Present measurements of this

local fNL are equivocal with the WMAP team reporting [3]

fNL = 51± 60 (95%) (1)

and with other teams obtaining higher [4] (WMAP3) or equivalent values [5, 6], while with improved

WMAP5 noise analysis a lower value was found fNL = 38 ± 42, but at a similar 2σ significance [7]. The

Planck satellite experiment is expected to markedly improve precision measurements with ∆fNL = 5 or

better [8].

Further motivation for the study of the bispectrum comes from the prospect of distinguishing alternative

more complex models of inflation which can produce nonGaussianity with potentially observable amplitudes

fNL � 1, but also in a variety of different bispectrum shapes, that is, with the nonGaussian signal peaked

for different triangle configurations of wavevectors. To date only special separable bispectrum shapes

have been constrained by CMB data, that is, those that can be expressed (schematically) in the form

B(k1, k2, k3) = X(k1)Y (k2)Z(k3), or else can be accurately approximated in this manner. All CMB analysis,

such as those quoted above for the local shape (1), exploits this separability to reduce the dimensionality of

the required integrations and summations to bring them to a tractable form. The separable approach reduces

the problem from one of O(l5max) operations to a manageable O(l3max) [9]. Other examples of meaningful

constraints on separable bispectrum shapes using WMAP5 data include those for the equilateral shape [3]

and another shape ‘orthogonal’ to both equilateral and local [10]. Despite these three shapes being a good

approximation to non-Gaussianity from a number of classes of inflation models, they are not exhaustive

in their coverage of known primordial models [11], nor other types of late-time non-Gaussianity, such as

that from cosmic strings [12, 13]; they cannot be expected to be, given the functional degrees of freedom

available. Bringing observations to bear on this much broader class of cosmological models, therefore, is

the primary motivation for this paper.

In a previous paper [14], we described a general approach to the estimation of non-separable CMB bis-

pectra. The method has developed out of the first direct calculations of the reduced CMB bispectrum bl1l2l3
which surveyed a wide variety of non-separable primordial models, revealing smooth coherent patterns of
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